新书趣阁【www.shuquge2.com】第一时间更新《走进不科学》最新章节。
这条公理的内容是这样的:
同一平面内一条直线和另外两条直线相交,若在某一侧的两个内角的和小于两直角,则这两直线经无限延长后在这一侧相交。
由于第五公理文字叙述冗长,不那么显而易见。
因此一些数学家提出了一个想法:
第五公理能不能不作为公理,而作为定理呢?
能不能依靠其他公理来证明第五公理?
这就是几何发展史上争论了长达两千多年的“平行线理论”的讨论。
瑞士几何学家数学家兰贝尔特、法国著名的数学家勒让德和拉格朗日等人,都在这个问题上花费了大量的精力。
然而遗憾的是,他们都没有成功。
这个问题像纸片人老婆一样。
无情地消耗着宅男们的纸巾,而不给予他们任何实质性的爱情。
这种情况一直持续到了19世纪初,终于有个人站了出来:
他就是俄国数学家罗巴切夫斯基。
他的思路与前人截然不同,继承了毛熊的优良传统,大胆思索了这个问题的相反提法:
有没有一种可能,那就是根本就不存在第五公设的证明?
于是呢。
他便沿着这条思路进行研究,着手寻求第五公设不可证的解答。
他首先做的,便是对第五公设加以否定。
也就是假设“过平面上直线外一点,至少可引两条直线与已知直线不相交“。
然后用这个否定命题和其他公理公设组成新的公理系统,并由此展开逻辑推演。
最终在在推演过程中,他得到了一连串古怪的数据。
但令人惊讶的是。
经过巴罗切夫斯基的仔细审查,却没有发现它们之间含有任何逻辑矛盾。
于是罗巴切夫斯基大胆断言:
这个“在结果中并不存在任何矛盾“的新公理系统,可以构成一种新的几何。
它的逻辑完整性和严密性可以和欧几里得几何相媲美,而这个无矛盾的新几何的存在,就是对第五公设可证性的反驳。
也就是对第五公设不可证性的逻辑证明。
新书趣阁【www.shuquge2.com】第一时间更新《走进不科学》最新章节。
本章未完,点击下一页继续阅读。